banner
Zoney

Zoney

一个励志成为Web安全工程师的女青年!

python study 2

三 函数#

调用函数

Python 内置了很多有用的函数,我们可以直接调用。要调用一个函数,需要知道函数的名称和参数,比如求绝对值的函数 abs,只有一个参数。
可以直接从 Python 的官方网站查看文档:
http://docs.python.org/3/library/functions.html#abs
也可以在交互式命令行通过 help (abs) 查看 abs 函数的帮助信息。

调用函数的时候,如果传入的参数数量不对,会报TypeError的错误,并且 Python 会明确地告诉你:abs () 有且仅有 1 个参数,但给出了两个:

>>> abs(1, 2)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: abs() takes exactly one argument (2 given)

如果传入的参数数量是对的,但参数类型不能被函数所接受,也会报 TypeError 的错误,并且给出错误信息:str 是错误的参数类型:

>>> abs('a')
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: bad operand type for abs(): 'str'

而 max 函数 max () 可以接收任意多个参数,并返回最大的那个:

>>> max(1, 2)
2
>>> max(2, 3, 1, -5)
3

数据类型转换
Python 内置的常用函数还包括数据类型转换函数,比如 int () 函数可以把其他数据类型转换为整数:

>>> int('123')
123
>>> int(12.34)
12
>>> float('12.34')
12.34
>>> str(1.23)
'1.23'
>>> str(100)
'100'
>>> bool(1)
True
>>> bool('')
False

函数名其实就是指向一个函数对象的引用,完全可以把函数名赋给一个变量,相当于给这个函数起了一个 “别名”:

>>> a = abs # 变量a指向abs函数
>>> a(-1) # 所以也可以通过a调用abs函数
1

定义函数
在 Python 中,定义一个函数要使用 def 语句,依次写出函数名、括号、括号中的参数和冒号:,然后,在缩进块中编写函数体,函数的返回值用 return 语句返回。

以自定义一个求绝对值的 my_abs 函数为例:

def my_abs(x):
    if x >= 0:
        return x
    else:
        return -x

请注意,函数体内部的语句在执行时,一旦执行到 return 时,函数就执行完毕,并将结果返回。因此,函数内部通过条件判断和循环可以实现非常复杂的逻辑。

如果没有 return 语句,函数执行完毕后也会返回结果,只是结果为None。return None 可以简写为 return。

在 Python 交互环境中定义函数时,注意 Python 会出现... 的提示。函数定义结束后需要按两次回车重新回到 >>> 提示符下

>>>def my_abs(x):
...   if x >= 0:
...       return x
...    else:
...        return -x
... 
>>> my_abs(-9)
9
>>>

如果你已经把 my_abs () 的函数定义保存为 abstest.py 文件了,那么,可以在该文件的当前目录下启动 Python 解释器,用 from abstest import my_abs 来导入 my_abs () 函数,注意 abstest 是文件名(不含.py 扩展名)

>>> from abstest import my_abs 
>>> my_abs(-9) 
9  

空函数
如果想定义一个什么事也不做的空函数,可以用 pass 语句:

def nop():
    pass

pass 语句什么都不做,那有什么用?实际上 pass 可以用来作为占位符,比如现在还没想好怎么写函数的代码,就可以先放一个 pass,让代码能运行起来。

pass 还可以用在其他语句里,比如:

if age >= 18:
    pass

缺少了 pass,代码运行就会有语法错误。

参数检查
调用函数时,如果参数个数不对,Python 解释器会自动检查出来,并抛出 TypeError:

>>> my_abs(1, 2)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: my_abs() takes 1 positional argument but 2 were given

但是如果参数类型不对,Python 解释器就无法帮我们检查。试试 my_abs 和内置函数 abs 的差别:

>>> my_abs('A')
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<stdin>", line 2, in my_abs
TypeError: unorderable types: str() >= int()
>>> abs('A')
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: bad operand type for abs(): 'str'

当传入了不恰当的参数时,内置函数 abs 会检查出参数错误,而我们定义的 my_abs 没有参数检查,会导致 if 语句出错,出错信息和 abs 不一样。所以,这个函数定义不够完善。

让我们修改一下 my_abs 的定义,对参数类型做检查,只允许整数和浮点数类型的参数。数据类型检查可以用内置函数isinstance() 实现:

def my_abs(x):
    if not isinstance(x, (int, float)):
        raise TypeError('bad operand type')
    if x >= 0:
        return x
    else:
        return -x

添加了参数检查后,如果传入错误的参数类型,函数就可以抛出一个错误:

>>> my_abs('A')
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<stdin>", line 3, in my_abs
TypeError: bad operand type

返回多个值
函数可以返回多个值

比如在游戏中经常需要从一个点移动到另一个点,给出坐标、位移和角度,就可以计算出新的坐标:

import math

def move(x, y, step, angle=0):
    nx = x + step * math.cos(angle)
    ny = y - step * math.sin(angle)
    return nx, ny

import math 语句表示导入 math 包,并允许后续代码引用 math 包里的 sin、cos 等函数。
然后,我们就可以同时获得返回值:

>>> x, y = move(100, 100, 60, math.pi / 6)
>>> print(x, y)
151.96152422706632 70.0

但其实这只是一种假象,Python 函数返回的仍然是单一值:

>>> r = move(100, 100, 60, math.pi / 6)
>>> print(r)
(151.96152422706632, 70.0)

原来返回值是一个tuple!但是,在语法上,返回一个 tuple 可以省略括号,而多个变量可以同时接收一个 tuple,按位置赋给对应的值,所以,Python 的函数返回多值其实就是返回一个 tuple,但写起来更方便。
函数的参数
对于函数的调用者来说,只需要知道如何传递正确的参数,以及函数将返回什么样的值就够了,函数内部的复杂逻辑被封装起来,调用者无需了解。

Python 的函数定义非常简单,但灵活度却非常大。除了正常定义的必选参数外,还可以使用默认参数可变参数关键字参数,使得函数定义出来的接口,不但能处理复杂的参数,还可以简化调用者的代码。

位置参数
我们先写一个计算 x2 的函数:

def power(x):
    return x * x

对于 power (x) 函数,参数 x 就是一个位置参数。

当我们调用 power 函数时,必须传入有且仅有的一个参数 x:

>>> power(5)
25

现在,如果我们要计算 x3 怎么办?可以再定义一个 power3 函数,但是如果要计算 x4、x5…… 怎么办?我们不可能定义无限多个函数。

你也许想到了,可以把 power (x) 修改为 power (x, n),用来计算 xn

def power(x, n):
    s = 1
    while n > 0:
        n = n - 1
        s = s * x
    return s

对于这个修改后的 power (x, n) 函数,可以计算任意 n 次方:

>>> power(5, 2)
25

修改后的 power (x, n) 函数有两个参数:x 和 n,这两个参数都是位置参数,调用函数时,传入的两个值按照位置顺序依次赋给参数 x 和 n。

位置参数
我们先写一个计算 x2 的函数:

def power(x):
return x * x
对于 power (x) 函数,参数 x 就是一个位置参数。

当我们调用 power 函数时,必须传入有且仅有的一个参数 x:

power(5)
25
power(15)
225
现在,如果我们要计算 x3 怎么办?可以再定义一个 power3 函数,但是如果要计算 x4、x5…… 怎么办?我们不可能定义无限多个函数。

你也许想到了,可以把 power (x) 修改为 power (x, n),用来计算 xn,说干就干:

def power(x, n):
s = 1
while n > 0:
n = n - 1
s = s * x
return s
对于这个修改后的 power (x, n) 函数,可以计算任意 n 次方:

>>> power(5, 2)
25
>>> power(5, 3)
125

修改后的 power (x, n) 函数有两个参数:x 和 n,这两个参数都是位置参数,调用函数时,传入的两个值按照位置顺序依次赋给参数 x 和 n。

默认参数
新的 power (x, n) 函数定义没有问题,但是,旧的调用代码失败了,原因是我们增加了一个参数,导致旧的代码因为缺少一个参数而无法正常调用:

>>> power(5)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: power() missing 1 required positional argument: 'n'

Python 的错误信息很明确:调用函数 power () 缺少了一个位置参数 n。

这个时候,默认参数就排上用场了。由于我们经常计算 x2,所以,完全可以把第二个参数 n 的默认值设定为 2:

def power(x, n=2):
    s = 1
    while n > 0:
        n = n - 1
        s = s * x
    return s

这样,当我们调用 power (5) 时,相当于调用 power (5, 2):

>>> power(5)
25
>>> power(5, 2)
25

而对于 n > 2 的

其他情况,就必须明确地传入 n,比如 power (5, 3)。

从上面的例子可以看出,默认参数可以简化函数的调用。设置默认参数时,有几点要注意:

一是必选参数在前默认参数在后,否则 Python 的解释器会报错

二是如何设置默认参数。
当函数有多个参数时,把变化大的参数放前面,变化小的参数放后面。变化小的参数就可以作为默认参数。

使用默认参数有什么好处?最大的好处是能降低调用函数的难度。

举个例子,我们写个一年级小学生注册的函数,需要传入 name 和 gender 两个参数:

def enroll(name, gender):
    print('name:', name)
    print('gender:', gender)

这样,调用 enroll () 函数只需要传入两个参数:

>>> enroll('Sarah', 'F')
name: Sarah
gender: F

如果要继续传入年龄、城市等信息怎么办?这样会使得调用函数的复杂度大大增加。

我们可以把年龄和城市设为默认参数:

def enroll(name, gender, age=6, city='Beijing'):
    print('name:', name)
    print('gender:', gender)
    print('age:', age)
    print('city:', city)

这样,大多数学生注册时不需要提供年龄和城市,只提供必须的两个参数:

>>> enroll('Sarah', 'F')
name: Sarah
gender: F
age: 6
city: Beijing

只有与默认参数不符的学生才需要提供额外的信息:

enroll('Bob', 'M', 7)
enroll('Adam', 'M', city='Tianjin')
可见,默认参数降低了函数调用的难度,而一旦需要更复杂的调用时,又可以传递更多的参数来实现。无论是简单调用还是复杂调用,函数只需要定义一个。

有多个默认参数时,调用的时候,既可以按顺序提供默认参数,比如调用 enroll ('Bob', 'M', 7),意思是,除了 name,gender 这两个参数外,最后 1 个参数应用在参数 age 上,city 参数由于没有提供,仍然使用默认值。

也可以不按顺序提供部分默认参数。当不按顺序提供部分默认参数时,需要把参数名写上。比如调用 enroll ('Adam', 'M', city='Tianjin'),意思是,city 参数用传进去的值,其他默认参数继续使用默认值。

默认参数很有用,但使用不当,也会掉坑里。默认参数有个最大的坑,演示如下:

先定义一个函数,传入一个 list,添加一个 END 再返回:

def add_end(L=[]):
    L.append('END')
    return L

当你正常调用时,结果似乎不错:

>>> add_end([1, 2, 3])
[1, 2, 3, 'END']
>>> add_end(['x', 'y', 'z'])
['x', 'y', 'z', 'END']

当你使用默认参数调用时,一开始结果也是对的:

>>> add_end()
['END']

但是,再次调用 add_end () 时,结果就不对了:

>>> add_end()
['END', 'END']
>>> add_end()
['END', 'END', 'END']

很多初学者很疑惑,默认参数是 [],但是函数似乎每次都 “记住了” 上次添加了 'END' 后的 list。

原因解释如下:
Python 函数在定义的时候,默认参数 L 的值就被计算出来了,即 [],因为默认参数 L 也是一个变量,它指向对象 [],每次调用该函数,如果改变了 L 的内容,则下次调用时,默认参数的内容就变了,不再是函数定义时的 [] 了。

定义默认参数要牢记一点:默认参数必须指向不变对象!

要修改上面的例子,我们可以用 None 这个不变对象来实现:

def add_end(L=None):
    if L is None:
        L = []
    L.append('END')
    return L

现在,无论调用多少次,都不会有问题:

>>> add_end()
['END']
>>> add_end()
['END']

为什么要设计 str、None 这样的不变对象呢?因为不变对象一旦创建,对象内部的数据就不能修改,这样就减少了由于修改数据导致的错误。此外,由于对象不变,多任务环境下同时读取对象不需要加锁,同时读一点问题都没有。我们在编写程序时,如果可以设计一个不变对象,那就尽量设计成不变对象。

可变参数
在 Python 函数中,还可以定义可变参数。顾名思义,可变参数就是传入的参数个数是可变的,可以是 1 个、2 个到任意个,还可以是 0 个。

我们以数学题为例子,给定一组数字 a,b,c……,请计算 a2 + b2 + c2 + ……。

要定义出这个函数,我们必须确定输入的参数。由于参数个数不确定,我们首先想到可以把 a,b,c…… 作为一个 list 或 tuple 传进来,这样,函数可以定义如下:

def calc(numbers):
    sum = 0
    for n in numbers:
        sum = sum + n * n
    return sum

但是调用的时候,需要先组装出一个 list 或 tuple:

>>> calc([1, 2, 3])
14
>>> calc((1, 3, 5, 7))
84

如果利用可变参数,调用函数的方式可以简化成这样:

>>> calc(1, 2, 3)
14
>>> calc(1, 3, 5, 7)
84

所以,我们把函数的参数改为可变参数:

def calc(*numbers):
    sum = 0
    for n in numbers:
        sum = sum + n * n
    return sum

定义可变参数和定义一个 list 或 tuple 参数相比,仅仅在参数前面加了一个 * 号。在函数内部,参数 numbers 接收到的是一个tuple,因此,函数代码完全不变。但是,调用该函数时,可以传入任意个参数,包括 0 个参数:

>>> calc(1, 2)
5
>>> calc()
0

如果已经有一个 list 或者 tuple,要调用一个可变参数怎么办?可以这样做:

>>> nums = [1, 2, 3]
>>> calc(nums[0], nums[1], nums[2])
14

这种写法当然是可行的,问题是太繁琐,所以 Python 允许你在 list 或 tuple 前面加一个 * 号,把 list 或 tuple 的元素变成可变参数传进去:

>>> nums = [1, 2, 3]
>>> calc(*nums)
14

*nums 表示把 nums 这个 list 的所有元素作为可变参数传进去。这种写法相当有用,而且很常见。

关键字参数
可变参数允许你传入 0 个或任意个参数,这些可变参数在函数调用时自动组装为一个tuple。而关键字参数允许你传入 0 个或任意个含参数名的参数,这些关键字参数在函数内部自动组装为一个dict

def person(name, age, **kw):
    print('name:', name, 'age:', age, 'other:', kw)

函数 person 除了必选参数 name 和 age 外,还接受关键字参数 kw。在调用该函数时,可以只传入必选参数:

>>> person('Michael', 30)
name: Michael age: 30 other: {}

也可以传入任意个数的关键字参数:

>>> person('Bob', 35, city='Beijing')
name: Bob age: 35 other: {'city': 'Beijing'}
>>> person('Adam', 45, gender='M', job='Engineer')
name: Adam age: 45 other: {'gender': 'M', 'job': 'Engineer'}

关键字参数有什么用?它可以扩展函数的功能。比如,在 person 函数里,我们保证能接收到 name 和 age 这两个参数,但是,如果调用者愿意提供更多的参数,我们也能收到。试想你正在做一个用户注册的功能,除了用户名和年龄是必填项外,其他都是可选项,利用关键字参数来定义这个函数就能满足注册的需求。

和可变参数类似,也可以先组装出一个 dict,然后,把该 dict 转换为关键字参数传进去:

>>> extra = {'city': 'Beijing', 'job': 'Engineer'}
>>> person('Jack', 24, city=extra['city'], job=extra['job'])
name: Jack age: 24 other: {'city': 'Beijing', 'job': 'Engineer'}

当然,上面复杂的调用可以用简化的写法:

>>> extra = {'city': 'Beijing', 'job': 'Engineer'}
>>> person('Jack', 24, **extra)
name: Jack age: 24 other: {'city': 'Beijing', 'job': 'Engineer'}

extra 表示把 extra 这个 dict 的所有 key-value 用关键字参数传入到函数的kw 参数,kw 将获得一个 dict,注意 kw 获得的 dict 是 extra 的一份拷贝,对 kw 的改动不会影响到函数外的 extra。

命名关键字参数
对于关键字参数,函数的调用者可以传入任意不受限制的关键字参数。至于到底传入了哪些,就需要在函数内部通过 kw 检查。

仍以 person () 函数为例,我们希望检查是否有 city 和 job 参数:

def person(name, age, **kw):
    if 'city' in kw:
        # 有city参数
        pass
    if 'job' in kw:
        # 有job参数
        pass
    print('name:', name, 'age:', age, 'other:', kw)

但是调用者仍可以传入不受限制的关键字参数:

>>> person('Jack', 24, city='Beijing', addr='Chaoyang', zipcode=123456)

如果要限制关键字参数的名字,就可以用命名关键字参数,例如,只接收 city 和 job 作为关键字参数。这种方式定义的函数如下:

def person(name, age, *, city, job):
    print(name, age, city, job)

和关键字参数 **kw 不同,命名关键字参数需要一个特殊分隔符 *,* 后面的参数被视为命名关键字参数。

调用方式如下:

>>> person('Jack', 24, city='Beijing', job='Engineer')
Jack 24 Beijing Engineer

如果函数定义中已经有了一个可变参数,后面跟着的命名关键字参数就不再需要一个特殊分隔符 * 了:

def person(name, age, *args, city, job):
    print(name, age, args, city, job)

命名关键字参数必须传入参数名,这和位置参数不同。如果没有传入参数名,调用将报错:

>>> person('Jack', 24, 'Beijing', 'Engineer')
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: person() missing 2 required keyword-only arguments: 'city' and 'job'

由于调用时缺少参数名 city 和 job,Python 解释器把前两个参数视为位置参数,后两个参数传给 * args,但缺少命名关键字参数导致报错。

命名关键字参数可以有缺省值,从而简化调用:

def person(name, age, *, city='Beijing', job):
    print(name, age, city, job)

由于命名关键字参数 city 具有默认值,调用时,可不传入 city 参数:

>>> person('Jack', 24, job='Engineer')
Jack 24 Beijing Engineer

使用命名关键字参数时,要特别注意,如果没有可变参数,就必须加一个作为特殊分隔符。如果缺少,Python 解释器将无法识别位置参数和命名关键字参数

def person(name, age, city, job):
    # 缺少 *,city和job被视为位置参数
    pass

参数组合
在 Python 中定义函数,可以用必选参数、默认参数、可变参数、关键字参数和命名关键字参数,这 5 种参数都可以组合使用。但是请注意,参数定义的顺序必须是:必选参数、默认参数、可变参数、命名关键字参数和关键字参数

比如定义一个函数,包含上述若干种参数:

def f1(a, b, c=0, *args, **kw):
    print('a =', a, 'b =', b, 'c =', c, 'args =', args, 'kw =', kw)

def f2(a, b, c=0, *, d, **kw):
    print('a =', a, 'b =', b, 'c =', c, 'd =', d, 'kw =', kw)

在函数调用的时候,Python 解释器自动按照参数位置和参数名把对应的参数传进去。

>>> f1(1, 2)
a = 1 b = 2 c = 0 args = () kw = {}
>>> f1(1, 2, c=3)
a = 1 b = 2 c = 3 args = () kw = {}
>>> f1(1, 2, 3, 'a', 'b')
a = 1 b = 2 c = 3 args = ('a', 'b') kw = {}
>>> f1(1, 2, 3, 'a', 'b', x=99)
a = 1 b = 2 c = 3 args = ('a', 'b') kw = {'x': 99}
>>> f2(1, 2, d=99, ext=None)
a = 1 b = 2 c = 0 d = 99 kw = {'ext': None}

最神奇的是通过一个 tuple 和 dict,你也可以调用上述函数:

>>> args = (1, 2, 3, 4)
>>> kw = {'d': 99, 'x': '#'}
>>> f1(*args, **kw)
a = 1 b = 2 c = 3 args = (4,) kw = {'d': 99, 'x': '#'}
>>> args = (1, 2, 3)
>>> kw = {'d': 88, 'x': '#'}
>>> f2(*args, **kw)
a = 1 b = 2 c = 3 d = 88 kw = {'x': '#'}

所以,对于任意函数,都可以通过类似 func (*args, **kw) 的形式调用它,无论它的参数是如何定义的。

虽然可以组合多达 5 种参数,但不要同时使用太多的组合,否则函数接口的可理解性很差。

小结
1 Python 的函数具有非常灵活的参数形态,既可以实现简单的调用,又可以传入非常复杂的参数。

2 默认参数一定要用不可变对象,如果是可变对象,程序运行时会有逻辑错误!

3 要注意定义可变参数和关键字参数的语法:

*args 是可变参数,args 接收的是一个 tuple;

**kw 是关键字参数,kw 接收的是一个 dict。

4 以及调用函数时如何传入可变参数和关键字参数的语法:

可变参数既可以直接传入:func (1, 2, 3),又可以先组装 list 或 tuple,再通过args 传入:func ((1, 2, 3));

关键字参数既可以直接传入:func (a=1, b=2),又可以先组装 dict,再通过kw 传入:func ({'a': 1, 'b': 2})。

使用 * args 和 **kw 是 Python 的习惯写法,当然也可以用其他参数名,但最好使用习惯用法。

5 命名的关键字参数是为了限制调用者可以传入的参数名,同时可以提供默认值。

6 定义命名的关键字参数在没有可变参数的情况下不要忘了写分隔符 *,否则定义的将是位置参数。

递归函数
在函数内部,可以调用其他函数。如果一个函数在内部调用自身本身,这个函数就是递归函数。

举个例子,我们来计算阶乘 n! = 1 x 2 x 3 x ... x n,用函数 fact (n) 表示,可以看出:

fact(n)=n!=1×2×3×⋅⋅⋅×(n−1)×n=(n−1)!×n=fact(n−1)×n

所以,fact (n) 可以表示为 n x fact (n-1),只有 n=1 时需要特殊处理。

于是,fact (n) 用递归的方式写出来就是:

def fact(n):
    if n==1:
        return 1
    return n * fact(n - 1)

上面就是一个递归函数。可以试试:

>>> fact(1)
1
>>> fact(5)
120

如果我们计算 fact (5),可以根据函数定义看到计算过程如下:

===> fact(5)
===> 5 * fact(4)
===> 5 * (4 * fact(3))
===> 5 * (4 * (3 * fact(2)))
===> 5 * (4 * (3 * (2 * fact(1))))
===> 5 * (4 * (3 * (2 * 1)))
===> 5 * (4 * (3 * 2))
===> 5 * (4 * 6)
===> 5 * 24
===> 120

递归函数的优点是定义简单,逻辑清晰。理论上,所有的递归函数都可以写成循环的方式,但循环的逻辑不如递归清晰。

使用递归函数需要注意防止栈溢出。在计算机中,函数调用是通过(stack)这种数据结构实现的,每当进入一个函数调用,栈就会加一层栈帧,每当函数返回,栈就会减一层栈帧。由于栈的大小不是无限的,所以,递归调用的次数过多,会导致栈溢出。可以试试 fact (1000):

>>> fact(1000)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<stdin>", line 4, in fact
  ...
  File "<stdin>", line 4, in fact
RuntimeError: maximum recursion depth exceeded in comparison

解决递归调用栈溢出的方法是通过尾递归优化,事实上尾递归和循环的效果是一样的,所以,把循环看成是一种特殊的尾递归函数也是可以的。

尾递归: 是指在函数返回的时候,调用自身本身,并且,return 语句不能包含表达式
这样,编译器或者解释器就可以把尾递归做优化,使递归本身无论调用多少次,都只占用一个栈帧,不会出现栈溢出的情况。

上面的 fact (n) 函数由于 return n * fact (n - 1) 引入了乘法表达式,所以就不是尾递归了。要改成尾递归方式,需要多一点代码,主要是要把每一步的乘积传入到递归函数中:

def fact(n):
    return fact_iter(n, 1)

def fact_iter(num, product):
    if num == 1:
        return product
    return fact_iter(num - 1, num * product)

可以看到,return fact_iter (num - 1, num * product) 仅返回递归函数本身,num - 1 和 num * product 在函数调用前就会被计算,不影响函数调用。

fact (5) 对应的 fact_iter (5, 1) 的调用如下:

===> fact_iter(5, 1)
===> fact_iter(4, 5)
===> fact_iter(3, 20)
===> fact_iter(2, 60)
===> fact_iter(1, 120)
===> 120

尾递归调用时,如果做了优化,栈不会增长,因此,无论多少次调用也不会导致栈溢出。

遗憾的是,大多数编程语言没有针对尾递归做优化,Python 解释器也没有做优化,所以,即使把上面的 fact (n) 函数改成尾递归方式,也会导致栈溢出。

小结
1 使用递归函数的优点是逻辑简单清晰,缺点是过深的调用会导致栈溢出。

2 针对尾递归优化的语言可以通过尾递归防止栈溢出。尾递归事实上和循环是等价的,没有循环语句的编程语言只能通过尾递归实现循环。

3 Python 标准的解释器没有针对尾递归做优化,任何递归函数都存在栈溢出的问题。

四 高级特性#

代码越少,开发效率越高
切片
取一个 list 或 tuple 的部分元素是非常常见的操作。比如,一个 list 如下:

>>> L = ['Michael', 'Sarah', 'Tracy', 'Bob', 'Jack']

取前 3 个元素,应该怎么做?

笨办法:

>>> [L[0], L[1], L[2]]
['Michael', 'Sarah', 'Tracy']

之所以是笨办法是因为扩展一下,取前 N 个元素就没辙了。

取前 N 个元素,也就是索引为 0-(N-1) 的元素,可以用循环:

>>> r = []
>>> n = 3
>>> for i in range(n):
...     r.append(L[i])
... 
>>> r
['Michael', 'Sarah', 'Tracy']

对这种经常取指定索引范围的操作,用循环十分繁琐,因此,Python 提供了切片(Slice)操作符,能大大简化这种操作。

对应上面的问题,取前 3 个元素,用一行代码就可以完成切片:

>>> L[0:3]
['Michael', 'Sarah', 'Tracy']

L [0:3] 表示,从索引 0 开始取,直到索引 3 为止,但不包括索引 3。即索引 0,1,2,正好是 3 个元素。

如果第一个索引是 0,还可以省略:

>>> L[:3]
['Michael', 'Sarah', 'Tracy']

也可以从索引 1 开始,取出 2 个元素出来:

>>> L[1:3]
['Sarah', 'Tracy']

类似的,既然 Python 支持 L [-1] 取倒数第一个元素,那么它同样支持倒数切片

>>> L[-2:]
['Bob', 'Jack']
>>> L[-2:-1]
['Bob']

记住倒数第一个元素的索引是 -1

切片操作十分有用。我们先创建一个 0-99 的

>>> L = list(range(100))
>>> L
[0, 1, 2, 3, ..., 99]

可以通过切片轻松取出某一段数列。比如前 10 个数:

>>> L[:10]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

后 10 个数:

>>> L[-10:]
[90, 91, 92, 93, 94, 95, 96, 97, 98, 99]

前 11-20 个数:

>>> L[10:20]
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

前 10 个数,每两个取一个:

>>> L[:10:2]
[0, 2, 4, 6, 8]

所有数,每 5 个取一个:

>>> L[::5]
[0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95]

甚至什么都不写,只写 [:] 就可以原样复制一个 list:

>>> L[:]
[0, 1, 2, 3, ..., 99]

tuple 也是一种 list,唯一区别是 tuple 不可变。因此,tuple 也可以用切片操作,只是操作的结果仍是 tuple:

>>> (0, 1, 2, 3, 4, 5)[:3]
(0, 1, 2)

字符串 'xxx' 也可以看成是一种 list,每个元素就是一个字符。因此,字符串也可以用切片操作,只是操作结果仍是字符串:

>>> 'ABCDEFG'[:3]
'ABC'
>>> 'ABCDEFG'[::2]
'ACEG'

在很多编程语言中,针对字符串提供了很多各种截取函数(例如,substring),其实目的就是对字符串切片。Python 没有针对字符串的截取函数,只需要切片一个操作就可以完成,非常简单。

迭代
如果给定一个 list 或 tuple,我们可以通过 for 循环来遍历这个 list 或 tuple,这种遍历我们称为迭代(Iteration)。

在 Python 中,迭代是通过for ... in来完成的
而很多语言比如 C 语言,迭代 list 是通过下标完成的,比如 C 代码:

for (i=0; i<length; i++) {
    n = list[i];
}

可以看出,Python 的 for 循环抽象程度要高于 C 的 for 循环,因为 Python 的 for 循环不仅可以用在 list 或 tuple 上,还可以作用在其他可迭代对象上。

list 这种数据类型虽然有下标,但很多其他数据类型是没有下标的,但是,只要是可迭代对象,无论有无下标,都可以迭代,比如 dict 就可以迭代:

>>> d = {'a': 1, 'b': 2, 'c': 3}
>>> for key in d:
...     print(key)
...
a
c
b

因为 dict 的存储不是按照 list 的方式顺序排列,所以,迭代出的结果顺序很可能不一样。

默认情况下,dict 迭代的是 key。如果要迭代 value,可以用for value in d.values(),如果要同时迭代 key 和 value,可以用for k, v in d.items()

由于字符串也是可迭代对象,因此,也可以作用于 for 循环:

>>> for ch in 'ABC':
...     print(ch)
...
A
B
C

所以,当我们使用 for 循环时,只要作用于一个可迭代对象,for 循环就可以正常运行,而我们不太关心该对象究竟是 list 还是其他数据类型。

那么,如何判断一个对象是可迭代对象呢?方法是通过collections.abc 模块的 Iterable类型判断:

>>> from collections.abc import Iterable
>>> isinstance('abc', Iterable) # str是否可迭代
True
>>> isinstance([1,2,3], Iterable) # list是否可迭代
True
>>> isinstance(123, Iterable) # 整数是否可迭代
False

最后一个问题,如果要对 list 实现类似 Java 那样的下标循环怎么办?Python 内置的enumerate 函数可以把一个 list 变成索引 - 元素对,这样就可以在 for 循环中同时迭代索引和元素本身:

>>> for i, value in enumerate(['A', 'B', 'C']):
...     print(i, value)
...
0 A
1 B
2 C

上面的 for 循环里,同时引用了两个变量,在 Python 里是很常见的,比如下面的代码:

>>> for x, y in [(1, 1), (2, 4), (3, 9)]:
...     print(x, y)
...
1 1
2 4
3 9

任何可迭代对象都可以作用于 for 循环,包括我们自定义的数据类型,只要符合迭代条件,就可以使用 for 循环。

列表生成式
列表生成式即 List Comprehensions,是 Python 内置的非常简单却强大的可以用来创建 list 的生成式。

举个例子,要生成 list [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 可以用 list (range (1, 11))

但如果要生成 [1x1, 2x2, 3x3, ..., 10x10] 怎么做?方法一是循环:

>>> L = []
>>> for x in range(1, 11):
...    L.append(x * x)
...
>>> L
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

但是循环太繁琐,而列表生成式则可以用一行语句代替循环生成上面的 list:

>>> [x * x for x in range(1, 11)]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

写列表生成式时,把要生成的元素 x * x 放到前面,后面跟 for 循环,就可以把 list 创建出来

for 循环后面还可以加上 if 判断,这样我们就可以筛选出仅偶数的平方:

>>> [x * x for x in range(1, 11) if x % 2 == 0]
[4, 16, 36, 64, 100]

还可以使用两层循环,可以生成全排列:

>>> [m + n for m in 'ABC' for n in 'XYZ']
['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']

三层和三层以上的循环就很少用到了。

运用列表生成式,可以写出非常简洁的代码。例如,列出当前目录下的所有文件和目录名,可以通过一行代码实现:

>>> import os # 导入os模块,模块的概念后面讲到
>>> [d for d in os.listdir('.')] # os.listdir可以列出文件和目录
['.emacs.d', '.ssh', '.Trash', 'Adlm', 'Applications', 'Desktop', 'Documents', 'Downloads', 'Library', 'Movies', 'Music', 'Pictures', 'Public', 'VirtualBox VMs', 'Workspace', 'XCode']

for 循环其实可以同时使用两个甚至多个变量,比如 dict 的 items () 可以同时迭代 key 和 value:

>>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
>>> for k, v in d.items():
...     print(k, '=', v)
...
y = B
x = A
z = C

因此,列表生成式也可以使用两个变量来生成 list:

>>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
>>> [k + '=' + v for k, v in d.items()]
['y=B', 'x=A', 'z=C']

最后把一个 list 中所有的字符串变成小写:

>>> L = ['Hello', 'World', 'IBM', 'Apple']
>>> [s.lower() for s in L]
['hello', 'world', 'ibm', 'apple']

if ... else
使用列表生成式的时候,有些童鞋经常搞不清楚 if...else 的用法。

例如,以下代码正常输出偶数:

>>> [x for x in range(1, 11) if x % 2 == 0]
[2, 4, 6, 8, 10]

但是,我们不能在最后的 if 加上 else:

>>> [x for x in range(1, 11) if x % 2 == 0 else 0]
  File "<stdin>", line 1
    [x for x in range(1, 11) if x % 2 == 0 else 0]
                                              ^
SyntaxError: invalid syntax

这是因为跟在 for 后面的 if 是一个筛选条件,不能带 else,否则如何筛选?

把 if 写在 for 前面必须加 else,否则报错:

>>> [x if x % 2 == 0 for x in range(1, 11)]
  File "<stdin>", line 1
    [x if x % 2 == 0 for x in range(1, 11)]
                       ^
SyntaxError: invalid syntax

这是因为 for 前面的部分是一个表达式,它必须根据 x 计算出一个结果。因此,考察表达式:x if x % 2 == 0,它无法根据 x 计算出结果,因为缺少 else,必须加上 else:

>>> [x if x % 2 == 0 else -x for x in range(1, 11)]
[-1, 2, -3, 4, -5, 6, -7, 8, -9, 10]

上述 for 前面的表达式 x if x % 2 == 0 else -x 才能根据 x 计算出确定的结果。

可见,在一个列表生成式中,for 前面的 if ... else 是表达式,而 for 后面的 if 是过滤条件,不能带 else。

生成器
通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含 100 万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的 list,从而节省大量的空间。在 Python 中,这种一边循环一边计算的机制,称为生成器:generator

要创建一个 generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的 [] 改成 (),就创建了一个 generator:

>>> L = [x * x for x in range(10)]
>>> L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> g = (x * x for x in range(10))
>>> g
<generator object <genexpr> at 0x1022ef630>

创建 L 和 g 的区别仅在于最外层的 [] 和 (),L 是一个 list,而 g 是一个 generator。

我们可以直接打印出 list 的每一个元素,但我们怎么打印出 generator 的每一个元素呢?

如果要一个一个打印出来,可以通过next () 函数获得 generator 的下一个返回值:

>>> next(g)
0
>>> next(g)
1
>>> next(g)
4
>>> next(g)
9
>>> next(g)
16
>>> next(g)
25
>>> next(g)
36
>>> next(g)
49
>>> next(g)
64
>>> next(g)
81
>>> next(g)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration

generator 保存的是算法,每次调用 next (g),就计算出 g 的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出 StopIteration 的错误。

当然,上面这种不断调用 next (g) 实在是太变态了,正确的方法是使用 for 循环,因为generator 也是可迭代对象

>>> g = (x * x for x in range(10))
>>> for n in g:
...     print(n)
... 
0
1
4
9
16
25
36
49
64
81

所以,我们创建了一个 generator 后,基本上永远不会调用 next (),而是通过for 循环来迭代它,并且不需要关心 StopIteration 的错误。

generator 非常强大。如果推算的算法比较复杂,用类似列表生成式的 for 循环无法实现的时候,还可以用函数来实现。

比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:
1, 1, 2, 3, 5, 8, 13, 21, 34, ...
斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:

def fib(max):
    n, a, b = 0, 0, 1
    while n < max:
        print(b)
        a, b = b, a + b
        n = n + 1
    return 'done'

注意,赋值语句:

a, b = b, a + b

相当于:

t = (b, a + b) # t是一个tuple
a = t[0]
b = t[1]

但不必显式写出临时变量 t 就可以赋值。

上面的函数可以输出斐波那契数列的前 N 个数:

>>> fib(6)
1
1
2
3
5
8
'done'

仔细观察,可以看出,fib 函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似 generator。

也就是说,上面的函数和 generator 仅一步之遥。要把 fib 函数变成 generator 函数,只需要把 print (b) 改为 yield b 就可以了:

def fib(max):
    n, a, b = 0, 0, 1
    while n < max:
        yield b
        a, b = b, a + b
        n = n + 1
    return 'done'

这就是定义 generator 的另一种方法。如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator 函数,调用一个 generator 函数将返回一个 generator:

>>> f = fib(6)
>>> f
<generator object fib at 0x104feaaa0>

这里,最难理解的就是 generator 函数和普通函数的执行流程不一样。普通函数是顺序执行,遇到 return 语句或者最后一行函数语句就返回。而变成 generator 的函数,在每次调用 next () 的时候执行,遇到 yield 语句返回,再次执行时从上次返回的 yield 语句处继续执行

举个简单的例子,定义一个 generator 函数,依次返回数字 1,3,5:

def odd():
    print('step 1')
    yield 1
    print('step 2')
    yield(3)
    print('step 3')
    yield(5)

调用该 generator 函数时,首先要生成一个 generator 对象,然后用 next () 函数不断获得下一个返回值:

>>> o = odd()
>>> next(o)
step 1
1
>>> next(o)
step 2
3
>>> next(o)
step 3
5
>>> next(o)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration

可以看到,odd 不是普通函数,而是 generator 函数,在执行过程中,遇到 yield 就中断,下次又继续执行。执行 3 次 yield 后,已经没有 yield 可以执行了,所以,第 4 次调用 next (o) 就报错。

请务必注意:调用 generator 函数会创建一个 generator 对象,多次调用 generator 函数会创建多个相互独立的 generator。
有的发现这样调用 next () 每次都返回 1:

>>> next(odd())
step 1
1
>>> next(odd())
step 1
1
>>> next(odd())
step 1
1

原因在于 odd () 会创建一个新的 generator 对象,上述代码实际上创建了 3 个完全独立的 generator,对 3 个 generator 分别调用 next () 当然每个都会返回第一个值。

正确的写法是创建一个 generator 对象,然后不断对这一个 generator 对象调用 next ():

>>> g = odd()
>>> next(g)
step 1
1
>>> next(g)
step 2
3
>>> next(g)
step 3
5

回到 fib 的例子,我们在循环过程中不断调用 yield,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。

同样的,把函数改成 generator 函数后,我们基本上从来不会用 next () 来获取下一个返回值,而是直接使用 for 循环来迭代:

>>> for n in fib(6):
...     print(n)
...
1
1
2
3
5
8

但是用 for 循环调用 generator 时,发现拿不到 generator 的 return 语句的返回值。如果想要拿到返回值,必须捕获 StopIteration 错误,返回值包含在 StopIteration 的 value 中:

>>> g = fib(6)
>>> while True:
...     try:
...         x = next(g)
...         print('g:', x)
...     except StopIteration as e:
...         print('Generator return value:', e.value)
...         break
...
g: 1
g: 1
g: 2
g: 3
g: 5
g: 8
Generator return value: done

小结
1 generator 是非常强大的工具,在 Python 中,可以简单地把列表生成式改成 generator,也可以通过函数实现复杂逻辑的 generator

要理解 generator 的工作原理,它是在 for 循环的过程中不断计算出下一个元素,并在适当的条件结束 for 循环。对于函数改成的 generator 来说,遇到 return 语句或者执行到函数体最后一行语句,就是结束 generator 的指令,for 循环随之结束。

请注意区分普通函数和 generator 函数,普通函数调用直接返回结果:

>>> r = abs(6)
>>> r
6

generator 函数的调用实际返回一个 generator 对象

>>> g = fib(6)
>>> g
<generator object fib at 0x1022ef948>

迭代器
已经知道,可以直接作用于 for 循环的数据类型有以下几种:

一类是集合数据类型,如 list、tuple、dict、set、str 等;

一类是generator,包括生成器和带 yield 的 generator function。

这些可以直接作用于 for 循环的对象统称为可迭代对象:Iterable。

可以使用isinstance() 判断一个对象是否是 Iterable 对象:

>>> from collections.abc import Iterable
>>> isinstance([], Iterable)
True
>>> isinstance({}, Iterable)
True
>>> isinstance('abc', Iterable)
True
>>> isinstance((x for x in range(10)), Iterable)
True
>>> isinstance(100, Iterable)
False
 

而生成器不但可以作用于 for 循环,还可以被 next () 函数不断调用并返回下一个值,直到最后抛出 StopIteration 错误表示无法继续返回下一个值了。

可以被 next () 函数调用并不断返回下一个值的对象称为迭代器:Iterator。

可以使用isinstance() 判断一个对象是否是 Iterator 对象:

>>> from collections.abc import Iterator
>>> isinstance((x for x in range(10)), Iterator)
True
>>> isinstance([], Iterator)
False
>>> isinstance({}, Iterator)
False
>>> isinstance('abc', Iterator)
False

生成器都是 Iterator 对象,但 list、dict、str 虽然是 Iterable,却不是 Iterator。

把 list、dict、str 等 Iterable 变成 Iterator 可以使用iter() 函数:

>>> isinstance(iter([]), Iterator)
True
>>> isinstance(iter('abc'), Iterator)
True

你可能会问,为什么 list、dict、str 等数据类型不是 Iterator?

这是因为 Python 的 Iterator 对象表示的是一个数据流,Iterator 对象可以被 next () 函数调用并不断返回下一个数据,直到没有数据时抛出 StopIteration 错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过 next () 函数实现按需计算下一个数据,所以 Iterator 的计算是惰性的,只有在需要返回下一个数据时它才会计算。

Iterator 甚至可以表示一个无限大的数据流,例如全体自然数。而使用 list 是永远不可能存储全体自然数的。

小结
1 凡是可作用于 for 循环的对象都是 Iterable 类型;

2 凡是可作用于 next () 函数的对象都是 Iterator 类型,它们表示一个惰性计算的序列;

3 集合数据类型如 list、dict、str 等是 Iterable 但不是 Iterator,不过可以通过 iter () 函数获得一个 Iterator 对象。

Python 的 for 循环本质上就是通过不断调用 next () 函数实现的,例如:

for x in [1, 2, 3, 4, 5]:
    pass

实际上完全等价于:

# 首先获得Iterator对象:
it = iter([1, 2, 3, 4, 5])
# 循环:
while True:
    try:
        # 获得下一个值:
        x = next(it)
    except StopIteration:
        # 遇到StopIteration就退出循环
        break
加载中...
此文章数据所有权由区块链加密技术和智能合约保障仅归创作者所有。